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NON-STATIONARY FLOWS IN CHANNELS WITH PERMEABLE WALLS* 

N.M. BARASHKOV and F.F. SPIRIDONOV 

A flow of inviscid fluid in a plane or axisymmetric semi-infinite channel 

is considered. One wall of the channel is permeable, and injection or 

suction of fluid takes place through the other wall at constant lengthwise 

intensity, while the wall itself moves according to a prescribed law. The 

flow is assumed to be turbulent. An equation for the stream function is 

obtained, and a relation connecting the law of motion of the wall with 

the intensity of injection (suction) is chosen such that the equation has 

a selfsimilar solution. An approximate representation for the selfsimilar 

solution is found, and viscous drag in the motions at large Reynolds 

numbers is estimated. The process of constructing an approximate solution 

when the wall moves slowly is discussed. 

An approximate solution of the problem of stationary flows in channels 

with permeable walls, valid over a whole range of variation in the 

characteristic Reynolds number R, was constructed in /l/. It was shown 

that by virtue of the specific features of the problem (no slippage at the 

walls), the profiles of the velocity vector components vary insignificantly 

as R varies. A method given earlier in /l/ is used here to obtain self- 

similar solution of non-stationary problems in the limiting case when 

R-co. 

1. Consider a flow of incompressible fluid in a plane (v = 0) or axisymmetric cylindrical 

(v = i) channel of half-width a, varying with time t according to the law ct= a[t). Intense 

injection or suction occurs through the channel wall in a direction normal to it, at a rate 

Q = Q (t) constant along the permeable wall, and such that the characteristic Reynolds number 

R - Ipqdp I + 00. The motion of the fluid is considered in a Cartesian or cylindrical coordi- 

nate system (2, y), where the z axis coincides with the plane (axis) of symmetry of the flow 

and y is orthogonal to it. 

The flow is described by the following system of equations: 

.(l.l) 

where o is the vorticity, and W, v are the components of velocity vector along the z and 

y axis respectively, and are connected with the stream function $ by the relations 

1 W 

w=7-ay' 

i W 

v=--;;t,, 
(1.2) 

The boundary and initial conditions are 

y = 0, 0 = 0; y = a, v = q + daldt, w = 0 

z = 0, awlaz = 0 = aldaz 

t = 0, a = a,, q = q. 

J(1.3) 

Let us introduce the dimensionless variables 

z0 = z/a, y" = yla, w" = wlq, v" = vlq 

Then Eq.tl.1) will be replaced by 

0 a 
-UZi_ n+wO Z$- + ~%&+_O f(1.4) 

We shall seek the selfsimilar solutions of Eq.(1.4), and this demand will establish the 
need to satisfy the relation 
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a (dgyat = a = const 

which imposes on the laws of variation of a(t) and g(t) a constraint of the following form: 

0 (0 = !I (4 (at + B) 
Here p is a constant which can be found from the initial conditions of the 
Let us consider a stream function of the form 

rp" = 2°F (n), 11 = yoi+v 

satisfying, withoutlossof generality, the boundary conditions (1.3). 
Substituting into (1.4) the expressions for w",vO and o0 obtained, taking 

(1.5) into account, we obtain the following equation from the defining relations 
(1.2): 

(a prime 
The 

The 

(1 + v)-‘UF” - F’F” + FP = 0 

denotes differentiation with respect to the variable q). 

problem. 

G-5) 

relation 
of the type 

(1.6) 

boundary conditions (1.3) yield the following boundary conditions for the Sq.Cl.6): 

F (0) = F' (1) = 0, F (1) = -J-(1 - a) (1.7) 

plus sign in the last expression corresponds to suction of the fluid from the channel 
with daldt<O, and the minus sign corresponds to injection of the fluid with daldt > 0. 

Let us pass, in problem (1.6), (1.71, to a new dependent variable ~(11) ='F(q)/F(i). We 
obtain 

ycp” - ‘p’qf + ‘p(p” = 0, y = (1 + Y)-‘a/F (1) (1.8) 
cp (0) = cp’ (1) = 0, cp (1) = 1 (1.9) 

2. We shall seek an approximate solution of the boundary value problem (1.8), (1.9) 
using the method given in /l/. Since the solution sought is assumed (for physical reasons) 
to be smooth, we shall write it, taking into account the condition of symmetry of the axial 
component of the velocity vector, in the form of a series 

cp (I-I) = s/S? - V%$ + a7 (2tl - 3r13 + rl') + (2.1) 
a8 (3rl - 411* + q”) + . . . 

Expression (2.1) satisfies the boundary conditions (1.9). Additional conditions are, 
however, necessary in order to obtain the values of the coefficients a,, agr . . . 

One of these conditions 

‘p (1) v”’ (1) + Y(P” (1) = 0 (2.2) 
can be obtained directly from (1.8) and (1.9) by putting 'q =I. 

We obtain the second condition by integrating Eq.Cl.8) over the interval of variation 
of 1: 

[mm" - m'2 + ycp’lo’ = 0 (2.3) 
We can obtain a number of such conditions, but we shall limit ourselves to conditions 

(2.2) and (2.3), and determine only ~,,a, in expressions (2.1). Substituting this expression 
into conditions (2.2) and (2.3), we obtain 

a7 = C + Da,, EZaoa - 2Ga, - H = 0 

C = l/g (1 + y)W3 + y), D = -2 (IO + y)/(8 + y) 
(2.4) 

E = -2 (16 + y)l(8 + y), G = 2 (2176 + 408~ f 7ya - 

~308 + v)’ 
H = =toa (16895 + 333421, + 7487~~ + 448y8)l(8 + y)* 

The relation &'>IflH 1 holds in the most interesting interval in practice O<y,< 1; 
therefore the following expression will represent a good approximation to the smallest root 
of the second equation of (2.4) : 

Thus relation (2.1), the first relation of (2.4) and (2.5) together yield the required 
solution of the problem. We can carry out an identical analysis for the case when the 
Reynolds number has finite values. 

up=- -&(i- -3 0.5) 

3. Let us compare the approximate solution obtained for ,y -0, with the exact limiting 
solution as (R-+ co) 

'p (?l) = sin V*rc?l (3.1) 

In this case the coefficients in the approximate solution (2.1) have the form 

a, = 0.05415 ) a, = -0.01541 (3.2) 
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The first derivatives of expressions (3.1) and (2.1), (3.2) 

determine the corresponding profiles of the longitudinal component 

of the velocity vector in the channel. The figure shows these 

relationships (the dot-dash and solid lines I), as well as the 

analogous relationships for the values y = 0.5 (curve 2) and 

y = 1.0 (curve 3), 0,' = cp'/cp'(O). We see that the velocity 

profile in the channel changes very little over a wide range of 

variation in the value of the parameter y, and differs very 

little from the stationary profile. 

By virtue of the specific features of the problem (no 
tangential component of the velocity vector at the permeable wall 

for any value of the Reynolds number), and since the coefficient 

of friction at the wall 

differs very little, as the results of /l/ for y = 0 and R& 

100 indicate, from its limiting value as R - 00, we find that 

in the present case we can analyse the change in the limiting 

value cf relative to the change in y. Here 7, is the intensity 

of friction at the permeable wall, and w,,, is the longitudinal 

velocity averaged over the transverse cross-section of the channel. 

If we define the relative coefficient of friction as cfr = C+Cfo, where the zero subscript 

denotes the value of cj at y = 0, we can easily show that cjr = 'p' (l)/cp,"(l). The relation 

Cjr = Ctr (Y) calculated with help of the solution obtained, is practically linear: cjr = l- 

0.32~. The limiting value of the coefficient of friction changes by more than a factor of 1.5 

when y varies from zero to one. 

4. In conclusion we note that when cc= o(1) a simple approximate solution of the boundary 

value problem (1.6), (1.7) can be obtained using the fact that although the small parameter 

a occurs in the boundary conditions, it does not appear in the equation as a coefficient 

accompanying the higher derivative. Therefore, the solution must behave in a regular manner 

during the passage to the limit as a-+0. We can seek the solution of the problem in question, 

satisfying the boundary conditions, in the form 

F (71) = 2 
ck sin+ (2k + 1)t) (4.') 

k==cl 

Confining ourselves to the first term of the series in (4.1), substituting the function 

F (n) = c0 sin V,nn into Eq. (1.6) and applying the collocation at the point n =O, we can 

satisfy the equation formally. From the condition F(l)= &(I- a) it follows that c,,= f(1 -a), 

and the approximate solution of the problem has the following form for small CL: 

F (I)) = +(I - a)sin Vlnn (4.2) 

When a=o, the solution is identical with solution (3.1). It can be shown that the 

modulus of the discrepancy 6 in Eq.(1.6) does not exceed nza(If~)-1/4, i.e. when a = 0.01, the 

value of 6 does not exceed 3%. The figure shows, for comparison, the solutions (2.1) and 

(4.2) by the solid and dashed lines respectively, for the values of the parameter a = 0.05 

(curves 4) and a= 0.15 (curves 5). We see that the solutions differ very little from each 

other, 
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